Integral Representation of Skorokhod Reflection

نویسندگان

  • VENKAT ANANTHARAM
  • TAKIS KONSTANTOPOULOS
  • Edward C. Waymire
چکیده

We show that a certain integral representation of the one-sided Skorokhod reflection of a continuous bounded variation function characterizes the reflection in that it possesses a unique maximal solution which solves the Skorokhod reflection problem.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A note on integral representations of the Skorokhod map

We present a very short derivation of the integral representation of the two-sided Skorokhod reflection Z of a continuous function X of bounded variation, which is a generalization of the integral representation of the one-sided map featured in [1, 4]. We also show that Z satisfies a simpler integral representation when additional conditions are imposed on X.

متن کامل

A deterministic approach to the Skorokhod problem

Abstract: We prove an existence and uniqueness result for the solutions to the Skorokhod problem on uniformly prox-regular sets through a deterministic approach. This result can be applied in order to investigate some regularity properties of the value function for differential games with reflection on the boundary.

متن کامل

The Skorokhod Oblique Reflection Problem in a Convex Polyhedron

The Skorokhod oblique reflection problem is studied in the case of n-dimensional convex polyhedral domains. The natural sufficient condition on the reflection directions is found, which together with the Lipschitz condition on the coefficients gives the existence and uniqueness of the solution. The continuity of the corresponding solution mapping is established. This property enables one to con...

متن کامل

On the irreducibility of the complex specialization of the representation of the Hecke algebra of the complex reflection group $G_7$

We consider a 2-dimensional representation of the Hecke algebra $H(G_7, u)$, where $G_7$ is the complex reflection group and $u$ is the set of indeterminates $u = (x_1,x_2,y_1,y_2,y_3,z_1,z_2,z_3)$. After specializing the indetrminates to non zero complex numbers, we then determine a necessary and sufficient condition that guarantees the irreducibility of the complex specialization of the repre...

متن کامل

Uniqueness for the Skorokhod Equation with Normal Reflection in Lipschitz Domains

We consider the Skorokhod equation dXt = dWt + (1/2)ν(Xt)dLt in a domain D, where Wt is Brownian motion in R, ν is the inward pointing normal vector on the boundary of D, and Lt is the local time on the boundary. The solution to this equation is reflecting Brownian motion in D. In this paper we show that in Lipschitz domains the solution to the Skorokhod equation is unique in law.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010